C and N accumulation in arable soils of West Germany and its influence on the environment — Developments 1970 to 1998

Author(s):  
Rolf Nieder ◽  
Jörg Richter
2000 ◽  
Vol 80 (2) ◽  
pp. 271-276 ◽  
Author(s):  
T. Paré ◽  
H. Dinel ◽  
M. Schnitzer

The recycling of poultry (Gallus gallus domesticus) manure (PM) needs to be done in a manner that will not only improve soil physical, chemical and biological properties but also minimize environmental risks. Untreated PM is more difficult to handle and more expensive to apply than granular fertilizers; the application of PM in the form of tablets may be a suitable alternative. It is necessary to determine whether C and N mineralization in tabletized PM (T-PM) differs from non-tabletized PM (NT-PM). Net C and N mineralization from a Brandon loam soil (Typic Endoaquoll) amended with NT-PM and T-PM, were measured in an incubation study at 25 °C. After 60 d of incubation, about 62 and 77% of total PM carbon was mineralized in NT-PM and T-PM amended soils, respectively. Carbon mineralization was not stimulated by the addition of PM tablets containing NPK to soil, while in soils mixed with NT-PM + NPK, soil respiration was reduced. Net N mineralization was similar in soils amended with T-PM and NT-PM, although changes in ammonium (NH4+–N) concentrations during incubation differed. Generally more NH4+–N accumulated in soil amended with T-PM and T-PM + NPK than with NT-PM and NT-PM + NPK The concentrations of nitrate (NO3−–N) did not differ in soils amended with T-PM and NT-PM, indicating a reduction in nitrification and NH4+–N accumulation in soils amended with PM tablets. Key words: Poultry manure, tablets, carbon mineralization, nitrogen mineralization, organic fertilizer


2021 ◽  
Author(s):  
Helena Doležalová-Weissmannová ◽  
Stanislav Malý ◽  
Martin Brtnický ◽  
Jiří Holátko ◽  
Michael Scott Demyan ◽  
...  

Abstract. Thermogravimetry (TG) is a simple method that enables rapid analysis of soil properties such as the content of total organic C, nitrogen, clay and C fractions with different stability. However, the possible link between TG data and microbiological soil properties has not been systematically tested yet and limits TG application for soil and soil organic matter assessment. This work aimed to search and to validate relationships of thermal mass losses (TML) to total C and N contents, microbial biomass C and N, basal and substrate-induced respiration, extractable organic carbon content, anaerobic ammonification, urease activity, short-term nitrification activity, specific growth rate, and time to reach the maximum respiration rate for two sample sets of arable and grassland soils. Analyses of the training soil set revealed significant correlations of TML with basic soil properties such as carbon and nitrogen content with distinguishing linear regression parameters and temperatures of correlating mass losses for arable and grassland soils. In a second stage the equations of significant correlations were used for validation with an independent second sample set. This confirmed applicability of developed equations for prediction of microbiological properties mainly for arable soils. For grassland soils was the applicability lower, which was explained as the influence of rhizosphere processes. Nevertheless, the application of TG can facilitate the understanding of changes in soil caused by microorganism’s activity and the different regression equations between TG and soil parameters reflect changes in proportions between soil components caused by land use management.


1996 ◽  
Vol 22 (1) ◽  
pp. 179-183 ◽  
Author(s):  
R. Nieder ◽  
E. Neugebauer ◽  
A. Willenbockel ◽  
K. C. Kersebaum ◽  
J. Richter

2005 ◽  
Vol 32 (11) ◽  
pp. 1009 ◽  
Author(s):  
Annabelle Larmure ◽  
Christophe Salon ◽  
Nathalie G. Munier-Jolain

The effect of moderate temperature on seed N concentration during the seed-filling period was evaluated in pea (Pisum sativum L.) kept in growth cabinets and the relation between plant assimilate availability and the variation of seed N concentration with temperature was investigated. Seed N concentration of pea was significantly lowered when temperature during the seed-filling period decreased from a day / night temperature of 25 / 20°C to 15 / 10°C. Our results demonstrate that during the seed-filling period mechanisms linked with assimilate availability can modify seed N accumulation rate and / or seed-filling duration between 25 / 20°C and 15 / 10°C. At the lower temperature (15 / 10°C), an increased C availability resulting from an enhanced carbon fixation per degree-day allowed new competing vegetative sinks to grow as pea is an indeterminate plant. Consequently N availability to filling seeds was reduced. Because the rate of seed N accumulation per degree-day mainly depends on N availability to filling seeds, the rate of seed N accumulation was lower at the low temperature of our study (15 / 10°C) than at 25 / 20°C while seed growth rate per degree-day remains unaffected, consequently seed N concentration was reduced. Concomitantly, the increased C availability at the lower temperature prolonged the duration of the seed-filling period.


HortScience ◽  
1996 ◽  
Vol 31 (6) ◽  
pp. 914C-914
Author(s):  
Yong-Zhan Ma ◽  
Martin P.N. Gent

How are C and N metabolites affected by a root-zone temperature (RZT) in phase or out of phase with the photoperiod? Tomato (Lycopersicon esculentum Mill.) was grown with an air temperature of 20C, and RZT that was in phase with a 12-h photoperiod, 28C in the light and 12C in the dark, or out of phase, 12C in the light and 28C in the dark. Seedlings were grown in flowing solution containing 200 μm NO3 and excess amount of other mineral elements. The flow rate increased with plant size. After 8 days, plants were harvested at the end of the day and at the end of the night. The relative growth rate (day–1) was slightly greater for in-phase (0.19) than out-of-phase RZT (0.17) and less than that at a constant air and RZT of 24C (0.22). RZT affected N accumulation and partitioning of C and N metabolites. Cool roots contained more NO3 and free sugars than warm roots. Leaves had less NO3 in the light than in the dark, and NO3 in leaves of plants with an out-of-phase RZT was depleted in the light. Concentration of free amino acids and protein was greater and the amount of starch was less in leaves of plants with in-phase RZT.


Author(s):  
Hans Dávila Reátegui ◽  
Vincent Poirier ◽  
Marie R. Coyea ◽  
Alison D. Munson

Forest management activities are increasingly analyzed through a lens that quantifies their effects on soil carbon (C) and nitrogen (N) storage, because forest soils are an important C sink. Data on the longer-term impacts of repeated interventions are often lacking. At the Petawawa Research Forest, Ontario, treatments to evaluate the effect of repeated thinnings on wood quality of red and white pine were initiated in 1918 with the first experimental plots in Canada, permanent sample plot 1 (thinned) and 2 (control). In 2005, 16 years after the last thinning in 1989, we observed that repeated thinnings reduced soil C and N stocks in the surface L and F and Ah horizons. Contrary to our hypotheses, concentrations and stocks of C and N increased in the Bm1 horizon, indicating that these elements could be accumulated in deeper horizons after surface disturbance and potentially increased decomposition associated with thinning. However, total C and N accumulation in the profile to 30 cm contributed to reduced storage (-35 % for C, and -30 % for N). Many forest sites in the Great Lakes Forest Region that are selectively cut repeatedly over decades could experience this level of soil C and N decline.


2020 ◽  
Author(s):  
Shouqin Sun ◽  
Genxu Wang ◽  
Xinbao Zhang

<p>Climate change is resulting in accelerated retreat of glaciers worldwide, leaving behind bare soil and succeeding vegetation at ecological sites that share similar attributes but represent different ages across chronosequences of primary succession. These glacial succession chronosequences provide a space for time exchange opportunity to investigate the development of soil and vegetation from the very beginning. In this study we investigated how soil carbon (C), nitrogen (N) and phosphorus (P) nutrients were accumulated along a 127-yr primary successional chronosequence on Hailuogou glacier, China, where the soil samples were collected at 1-cm depth interval from 9 sectioned profiles with ages ranged from 27 yr to 127 yr on the glacial retreated area. Soil organic C (SOC) and TN showed an increasing trend along the chronosequence. The organic C and N accumulation was minimal after 27 yr of succession; with succession the soil had slightly C and N accumulation at the surface 0-1 cm depth after 45 to 53 years, and had obvious accumulation at the 0-2 cm depth after 59-72 years; the SOC and N accumulation extended to the 0-5 cm depth after 87 yr and to the 0-10 cm depth after 102 yrs. In contrast soil total P exhibited a depleting trend along the succession. Results indicated that the C and N accumulation along a glacier retreat chronosequence is not linear, but a slow increase in accumulating rates in the first 72 years, followed by a sharp increase between 72 to 87 years and then slow down with succession proceeded.</p>


2016 ◽  
Vol 13 (15) ◽  
pp. 4315-4327 ◽  
Author(s):  
Kristen L. Manies ◽  
Jennifer W. Harden ◽  
Christopher C. Fuller ◽  
Merritt R. Turetsky

Abstract. Boreal soils play a critical role in the global carbon (C) cycle; therefore, it is important to understand the mechanisms that control soil C accumulation and loss for this region. Examining C & nitrogen (N) accumulation rates over decades to centuries may provide additional understanding of the dominant mechanisms for their storage, which can be masked by seasonal and interannual variability when investigated over the short term. We examined longer-term accumulation rates, using 210Pb and 14C to date soil layers, for a wide variety of boreal ecosystems: a black spruce forest, a shrub ecosystem, a tussock grass ecosystem, a sedge-dominated ecosystem, and a rich fen. All ecosystems had similar decadal C accumulation rates, averaging 84 ± 42 gC m−2 yr−1. Long-term (century) C accumulation rates were slower than decadal rates, averaging 14 ± 5 gC m−2 yr−1 for all ecosystems except the rich fen, for which the long-term C accumulation rates was more similar to decadal rates (44 ± 5 and 76 ± 9 gC m−2 yr−1, respectively). The rich fen also had the highest long-term N accumulation rates (2.7 gN m−2 yr−1). The lowest N accumulation rate, on both a decadal and long-term basis, was found in the black spruce forest (0.2 and 1.4 gN m−2 yr−1, respectively). Our results suggest that the controls on long-term C and N cycling at the rich fen is fundamentally different from the other ecosystems, likely due to differences in the predominant drivers of nutrient cycling (oxygen availability, for C) and reduced amounts of disturbance by fire (for C and N). This result implies that most shifts in ecosystem vegetation across the boreal region, driven by either climate or succession, will not significantly impact regional C or N dynamics over years to decades. However, ecosystem transitions to or from a rich fen will promote significant shifts in soil C and N storage.


Sign in / Sign up

Export Citation Format

Share Document